Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Cancers (Basel) ; 15(20)2023 Oct 14.
Article En | MEDLINE | ID: mdl-37894355

Distinguishing treatment-related abnormalities (TRA) from tumor progression (TP) in glioblastoma patients is a diagnostic imaging challenge due to the identical morphology of conventional MR imaging sequences. Diffusion-weighted imaging (DWI) and its derived images of the apparent diffusion coefficient (ADC) have been suggested as diagnostic tools for this problem. The aim of this study is to determine the diagnostic accuracy of different cut-off values of the ADC to differentiate between TP and TRA. In total, 76 post-treatment glioblastoma patients with new contrast-enhancing lesions were selected. Lesions were segmented using a T1-weighted, contrast-enhanced scan. The mean ADC values of the segmentations were compared between TRA and TP groups. Diagnostic accuracy was compared by use of the area under the curve (AUC) and the derived sensitivity and specificity values from cutoff points. Although ADC values in TP (mean = 1.32 × 10-3 mm2/s; SD = 0.31 × 10-3 mm2/s) were significantly different compared to TRA (mean = 1.53 × 10-3 mm2/s; SD = 0.28 × 10-3 mm2/s) (p = 0.003), considerable overlap in their distributions exists. The AUC of ADC values to distinguish TP from TRA was 0.71, with a sensitivity and specificity of 65% and 70%, respectively, at an ADC value of 1.47 × 10-3 mm2/s. These findings therefore indicate that ADC maps should not be used in discerning between TP and TRA at a certain timepoint without information on temporal evolution.

2.
BMC Cancer ; 23(1): 788, 2023 Aug 23.
Article En | MEDLINE | ID: mdl-37612610

BACKGROUND: Glioblastoma (GBM) is the most common primary, malignant brain tumour with a 5-year survival of 5%. If possible, a glioblastoma is resected and further treated with chemoradiation therapy (CRT), but resection is not feasible in about 30% of cases. Current standard of care in these cases is a biopsy followed by CRT. Magnetic resonance (MR) imaging-guided laser interstitial thermal therapy (LITT) has been suggested as a minimally invasive alternative when surgery is not feasible. However, high-quality evidence directly comparing LITT with standard of care is lacking, precluding any conclusions on (cost-)effectiveness. We therefore propose a multicenter randomized controlled study to assess the (cost-)effectiveness of MR-guided LITT as compared to current standard of care (EMITT trial). METHODS AND ANALYSIS: The EMITT trial will be a multicenter pragmatic randomized controlled trial in the Netherlands. Seven Dutch hospitals will participate in this study. In total 238 patients will be randomized with 1:1 allocation to receive either biopsy combined with same-session MR-guided LITT therapy followed by CRT or the current standard of care being biopsy followed by CRT. The primary outcomes will be health-related quality of life (HR-QoL) (non-inferiority) using EORTC QLQ-C30 + BN20 scores at 5 months after randomization and overall survival (superiority). Secondary outcomes comprise cost-effectiveness (healthcare and societal perspective) and HR-QoL of life over an 18-month time horizon, progression free survival, tumour response, disease specific survival, longitudinal effects, effects on adjuvant treatment, ablation percentage and complication rates. DISCUSSION: The EMITT trial will be the first RCT on the effectiveness of LITT in patients with glioblastoma as compared with current standard of care. Together with the Dutch Brain Tumour Patient association, we hypothesize that LITT may improve overall survival without substantially affecting patients' quality of life. TRIAL REGISTRATION: This trial is registered at ClinicalTrials.gov (NCT05318612).


Glioblastoma , Hyperthermia, Induced , Humans , Quality of Life , Glioblastoma/diagnosis , Glioblastoma/therapy , Biopsy , Adjuvants, Immunologic , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
3.
J Nucl Med ; 64(10): 1526-1531, 2023 10.
Article En | MEDLINE | ID: mdl-37652540

Upregulation of prostate-specific membrane antigen (PSMA) in neovasculature has been described in glioblastoma multiforme (GBM), whereas vasculature in nonaffected brain shows hardly any expression of PSMA. It is unclear whether PSMA-targeting tracer uptake on PET is based on PSMA-specific binding to neovasculature or aspecific uptake in tumor. Here, we quantified uptake of various PSMA-targeting tracers in GBM and correlated this with PSMA expression in tumor biopsy samples from the same patients. Methods: Fourteen patients diagnosed with de novo (n = 8) or recurrent (n = 6) GBM underwent a preoperative PET scan after injection of 1.5 MBq/kg [68Ga]Ga-PSMA-11 (n = 7), 200 MBq of [18F]DCFpyl (n = 3), or 200 MBq of [18F]PSMA-1007 (n = 4). Uptake in tumor and tumor-to-background ratios, with contralateral nonaffected brain as background, were determined. In a subset of patients, PSMA expression levels from different regions in the tumor tissue samples (n = 40), determined using immunohistochemistry (n = 35) or RNA sequencing (n = 13), were correlated with tracer uptake on PET. Results: Moderate to high (SUVmax, 1.3-20.0) heterogeneous uptake was found in all tumors irrespective of the tracer type used. Uptake in nonaffected brain was low, resulting in high tumor-to-background ratios (6.1-359.0) calculated by dividing SUVmax of tumor by SUVmax of background. Immunohistochemistry showed variable PSMA expression on endothelial cells of tumor microvasculature, as well as on dispersed individual cells (of unknown origin), and granular staining of the neuropil. No correlation was found between in vivo uptake and PSMA expression levels (for immunohistochemistry, r = -0.173, P = 0.320; for RNA, r = -0.033, P = 0.915). Conclusion: Our results indicate the potential use of various PSMA-targeting tracers in GBM. However, we found no correlation between PSMA expression levels on immunohistochemistry and uptake intensity on PET. Whether this may be explained by methodologic reasons, such as the inability to measure functionally active PSMA with immunohistochemistry, tracer pharmacokinetics, or the contribution of a disturbed blood-brain barrier to tracer retention, should still be investigated.


Glioblastoma , Prostatic Neoplasms , Male , Humans , Glioblastoma/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Gallium Radioisotopes , Endothelial Cells/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Positron-Emission Tomography
5.
Brain Spine ; 3: 101749, 2023.
Article En | MEDLINE | ID: mdl-37383437

Introduction: In the last decades, the application of stereotactic laser ablation (SLA) for the treatment of intracranial tumours has been growing, even though comparative trials are lacking. Our aim was to investigate the familiarity with SLA of neurosurgeons in Europe and their opinion regarding potential neuro-oncological indications. Furthermore, we investigated treatment preferences and variability for three exemplar neuro-oncological cases and willingness to refer for SLA. Material and methods: A 26-questions survey was mailed to members of the EANS neuro-oncology section. We presented three clinical cases of respectively deep-seated glioblastoma, recurrent metastasis and recurrent glioblastoma. Descriptive statistics was applied to report results. Results: 110 respondents completed all questions. Recurrent glioblastoma and recurrent metastases were regarded as the most feasible indications for SLA (chosen by 69% and 58% of the respondents) followed by newly diagnosed high-grade gliomas (31%). Seventy percent of respondents would refer patients for SLA. The majority of respondents would consider SLA as a treatment option for all three presented cases: 79% for the deep-seated glioblastoma case, 65% for the recurrent metastasis case and 76% for the recurrent glioblastoma case. Among respondents who wouldn't consider SLA, preference for standard treatment and lack of clinical evidence were reported as the main reasons. Conclusions: Most of respondents considered SLA as a treatment option for recurrent glioblastoma, recurrent metastases and newly diagnosed deep-seated glioblastoma. At the moment the current evidence to support such a treatment is very low. Comparative prospective trials are needed to support the use of SLA and determine proper indications.

6.
Cancers (Basel) ; 15(9)2023 May 05.
Article En | MEDLINE | ID: mdl-37174097

The post-treatment imaging surveillance of gliomas is challenged by distinguishing tumor progression (TP) from treatment-related abnormalities (TRA). Sophisticated imaging techniques, such as perfusion-weighted magnetic resonance imaging (MRI PWI) and positron-emission tomography (PET) with a variety of radiotracers, have been suggested as being more reliable than standard imaging for distinguishing TP from TRA. However, it remains unclear if any technique holds diagnostic superiority. This meta-analysis provides a head-to-head comparison of the diagnostic accuracy of the aforementioned imaging techniques. Systematic literature searches on the use of PWI and PET imaging techniques were carried out in PubMed, Embase, the Cochrane Library, ClinicalTrials.gov and the reference lists of relevant papers. After the extraction of data on imaging technique specifications and diagnostic accuracy, a meta-analysis was carried out. The quality of the included papers was assessed using the QUADAS-2 checklist. Nineteen articles, totaling 697 treated patients with glioma (431 males; mean age ± standard deviation 50.5 ± 5.1 years) were included. The investigated PWI techniques included dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE) and arterial spin labeling (ASL). The PET-tracers studied concerned [S-methyl-11C]methionine, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) and 6-[18F]-fluoro-3,4-dihydroxy-L-phenylalanine ([18F]FDOPA). The meta-analysis of all data showed no diagnostic superior imaging technique. The included literature showed a low risk of bias. As no technique was found to be diagnostically superior, the local level of expertise is hypothesized to be the most important factor for diagnostically accurate results in post-treatment glioma patients regarding the distinction of TRA from TP.

7.
Eur J Radiol ; 162: 110799, 2023 May.
Article En | MEDLINE | ID: mdl-37001257

OBJECTIVE: Vestibular schwannoma (VS) growth of ≥2 mm during serial MRI observation, irrespective of size, is the benchmark for treatment initiation in almost all centers. Although the probability of less optimal outcomes significantly increases in VS closer to the brainstem, early intervention does not improve long-term quality of life. Moving beyond the recommendation of definitive treatment for all VS after detected growth, we subclassified Koos 2 tumors based on extrameatal extension and relation to the brainstem. The aim of the current study was to evaluate the Koos 2 subclassification's validity and the inter-and intra-rater reliability of the entire Koos classification. METHODS: Six experts, including neurosurgeons, otorhinolaryngologists and radiologists from two tertiary referral centers, classified 43 VS MRI scans. Validity of the Koos 2 subclassification was evaluated by the percentage agreement against the multidisciplinary skull base tumor board management advice. Inter- and intra-rater reliability were calculated using the intraclass correlation coefficient (ICC). RESULTS: Validity was almost perfect in Koos 2a VSs with a 100% agreement and 87.5% agreement for Koos 2b. Inter-rater reliability for all Koos grades was significantly excellent (ICC 0.91; 95%CI 0.866 to 0.944, p= <0.001). Five raters had an excellent intra-rater reliability (ICC > 0.90; p= <0.01) and one rater had a good intra-rater reliability (ICC 0.88; 95% CI 0.742 to 0.949). CONCLUSIONS: Although multiple factors influence decision-making, the classification of Koos 2a and 2b with excellent inter- and intra-rater reliability, can aid in recommending treatment initiation, moving beyond detected tumor growth, aiming to optimize patient centered care.


Neuroma, Acoustic , Humans , Neuroma, Acoustic/diagnostic imaging , Reproducibility of Results , Quality of Life , Patient Care , Magnetic Resonance Imaging , Observer Variation
8.
Neurooncol Pract ; 9(4): 328-337, 2022 Aug.
Article En | MEDLINE | ID: mdl-35855456

Background: People with gliomas need specialized neurosurgical, neuro-oncological, psycho-oncological, and neuropsychological care. The role of language and cognitive recovery and rehabilitation in patients' well-being and resumption of work is crucial, but there are no clear guidelines for the ideal timing and character of assessments and interventions. The goal of the present work was to describe representative (neuro)psychological practices implemented after brain surgery in Europe. Methods: An online survey was addressed to professionals working with individuals after brain surgery. We inquired about the assessments and interventions and the involvement of caregivers. Additionally, we asked about recommendations for an ideal assessment and intervention plan. Results: Thirty-eight European centers completed the survey. Thirty of them offered at least one postsurgical (neuro)psychological assessment, mainly for language and cognition, especially during the early recovery stage and at long term. Twenty-eight of the participating centers offered postsurgical therapies. Patients who stand the highest chances of being included in evaluation and therapy postsurgically are those who underwent awake brain surgery, harbored a low-grade glioma, or showed poor recovery. Nearly half of the respondents offer support programs to caregivers, and all teams recommend them. Treatments differed between those offered to individuals with low-grade glioma vs those with high-grade glioma. The figure of caregiver is not yet fully recognized in the recovery phase. Conclusion: We stress the need for more complete rehabilitation plans, including the emotional and health-related aspects of recovery. In respondents' opinions, assessment and rehabilitation plans should also be individually tailored and goal-directed (eg, professional reinsertion).

9.
Patient Educ Couns ; 105(7): 1917-1927, 2022 07.
Article En | MEDLINE | ID: mdl-35341611

OBJECTIVES: To provide an overview of the existing research concerning the use and effects of AR in patient education. METHODS: Following PRISMA guidelines four electronic databases were systematically searched. INCLUSION CRITERIA: empirical studies using any type of AR intervention in patient education across all medical specialties. Quality assessment of the retrieved literature was carried out. RESULTS: Ten papers, comprising 788 patients, were identified and included (Randomized controlled trial (RCT)(n = 3), non-randomized controlled trial (n = 3), before-and-after study (n = 3), and qualitative survey (n = 1)). Retrieved literature showed itself to be highly heterogeneous. The studied population included patients suffering from a diverse spectrum of chronic diseases (e.g., prostate cancer, diabetes mellitus, multiple sclerosis, epilepsy). Quantitative results indicated that the use of AR had a positive effect on knowledge retention and patient satisfaction. Qualitative findings suggested that patients liked the technology and felt comfortable with its use for educational purposes. The quality of the retrieved results was shown to be moderate to low. CONCLUSION: The limited evidence of this topic suggests the possible potential of AR in patient education. PRACTICE IMPLICATION: More research, using high-quality study designs and more evidence-based interventions, is needed to fully appreciate the value of AR on patient education.


Augmented Reality , Chronic Disease , Humans , Male , Patient Education as Topic
10.
J Neurosurg ; : 1-10, 2022 Mar 11.
Article En | MEDLINE | ID: mdl-35276655

OBJECTIVE: Patients with glioblastoma are often scheduled for urgent elective surgery. Currently, the impact of the waiting period until glioblastoma surgery is undetermined. In this national quality registry study, the authors determined the wait times until surgery for patients with glioblastoma, the risk factors associated with wait times, and the risk-standardized variation in time to surgery between Dutch hospitals. The associations between time to surgery and patient outcomes were also explored. METHODS: Data from all 4589 patients who underwent first-time glioblastoma surgery between 2014 and 2019 in the Netherlands were collected by 13 hospitals in the Quality Registry Neuro Surgery. Time to surgery comprised 1) the time from first MR scan to surgery (MTS), and 2) the time from first neurosurgical consultation to surgery (CTS). Long MTS was defined as more than 21 days and long CTS as more than 14 days. Potential risk factors were analyzed in multivariable logistic regression models. The standardized rate of long time to surgery was analyzed using funnel plots. Patient outcomes including Karnofsky Performance Scale (KPS) score change, complications, and survival were analyzed by multivariable logistic regression and proportional hazards models. RESULTS: The median overall MTS and CTS were 18 and 9 days, respectively. Overall, 2576 patients (56%) had an MTS within 3 weeks and 3069 (67%) had a CTS within 2 weeks. Long MTS was significantly associated with older age, higher preoperative KPS score, higher American Society of Anesthesiologists comorbidity class, season, lower hospital case volume, university affiliation, and resection. Long CTS was significantly associated with higher baseline KPS score, university affiliation, resection, more recent year of treatment, and season. In funnel plots, considerable practice variation was observed between hospitals in patients with long times to surgery. Fewer patients with KPS score improvement were observed after a long time until resection. Long CTS was associated with longer survival. Complications and KPS score decline were not associated with time to surgery. CONCLUSIONS: Considerable between-hospital variation among Dutch hospitals was observed in the time to glioblastoma surgery. A long time to resection impeded KPS score improvement, and therefore, patients who may improve should be identified for more urgent resection. Longer survival was observed in patients selected for longer time until surgery after neurosurgical consultation (CTS).

11.
Cancers (Basel) ; 13(11)2021 May 26.
Article En | MEDLINE | ID: mdl-34073309

Treatment planning and prognosis in glioma treatment are based on the classification into low- and high-grade oligodendroglioma or astrocytoma, which is mainly based on molecular characteristics (IDH1/2- and 1p/19q codeletion status). It would be of great value if this classification could be made reliably before surgery, without biopsy. Machine learning algorithms (MLAs) could play a role in achieving this by enabling glioma characterization on magnetic resonance imaging (MRI) data without invasive tissue sampling. The aim of this study is to provide a performance evaluation and meta-analysis of various MLAs for glioma characterization. Systematic literature search and meta-analysis were performed on the aggregated data, after which subgroup analyses for several target conditions were conducted. This study is registered with PROSPERO, CRD42020191033. We identified 724 studies; 60 and 17 studies were eligible to be included in the systematic review and meta-analysis, respectively. Meta-analysis showed excellent accuracy for all subgroups, with the classification of 1p/19q codeletion status scoring significantly poorer than other subgroups (AUC: 0.748, p = 0.132). There was considerable heterogeneity among some of the included studies. Although promising results were found with regard to the ability of MLA-tools to be used for the non-invasive classification of gliomas, large-scale, prospective trials with external validation are warranted in the future.

12.
Eur Radiol ; 31(12): 9638-9653, 2021 Dec.
Article En | MEDLINE | ID: mdl-34019128

OBJECTIVES: Different machine learning algorithms (MLAs) for automated segmentation of gliomas have been reported in the literature. Automated segmentation of different tumor characteristics can be of added value for the diagnostic work-up and treatment planning. The purpose of this study was to provide an overview and meta-analysis of different MLA methods. METHODS: A systematic literature review and meta-analysis was performed on the eligible studies describing the segmentation of gliomas. Meta-analysis of the performance was conducted on the reported dice similarity coefficient (DSC) score of both the aggregated results as two subgroups (i.e., high-grade and low-grade gliomas). This study was registered in PROSPERO prior to initiation (CRD42020191033). RESULTS: After the literature search (n = 734), 42 studies were included in the systematic literature review. Ten studies were eligible for inclusion in the meta-analysis. Overall, the MLAs from the included studies showed an overall DSC score of 0.84 (95% CI: 0.82-0.86). In addition, a DSC score of 0.83 (95% CI: 0.80-0.87) and 0.82 (95% CI: 0.78-0.87) was observed for the automated glioma segmentation of the high-grade and low-grade gliomas, respectively. However, heterogeneity was considerably high between included studies, and publication bias was observed. CONCLUSION: MLAs facilitating automated segmentation of gliomas show good accuracy, which is promising for future implementation in neuroradiology. However, before actual implementation, a few hurdles are yet to be overcome. It is crucial that quality guidelines are followed when reporting on MLAs, which includes validation on an external test set. KEY POINTS: • MLAs from the included studies showed an overall DSC score of 0.84 (95% CI: 0.82-0.86), indicating a good performance. • MLA performance was comparable when comparing the segmentation results of the high-grade gliomas and the low-grade gliomas. • For future studies using MLAs, it is crucial that quality guidelines are followed when reporting on MLAs, which includes validation on an external test set.


Brain Neoplasms , Glioma , Algorithms , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Humans , Machine Learning , Magnetic Resonance Imaging
13.
Cancers (Basel) ; 13(4)2021 02 10.
Article En | MEDLINE | ID: mdl-33578746

Glioblastoma (GBM) is the most malignant primary brain tumor for which no curative treatment options exist. Non-invasive qualitative (Visually Accessible Rembrandt Images (VASARI)) and quantitative (radiomics) imaging features to predict prognosis and clinically relevant markers for GBM patients are needed to guide clinicians. A retrospective analysis of GBM patients in two neuro-oncology centers was conducted. The multimodal Cox-regression model to predict overall survival (OS) was developed using clinical features with VASARI and radiomics features in isocitrate dehydrogenase (IDH)-wild type GBM. Predictive models for IDH-mutation, 06-methylguanine-DNA-methyltransferase (MGMT)-methylation and epidermal growth factor receptor (EGFR) amplification using imaging features were developed using machine learning. The performance of the prognostic model improved upon addition of clinical, VASARI and radiomics features, for which the combined model performed best. This could be reproduced after external validation (C-index 0.711 95% CI 0.64-0.78) and used to stratify Kaplan-Meijer curves in two survival groups (p-value < 0.001). The predictive models performed significantly in the external validation for EGFR amplification (area-under-the-curve (AUC) 0.707, 95% CI 0.582-8.25) and MGMT-methylation (AUC 0.667, 95% CI 0.522-0.82) but not for IDH-mutation (AUC 0.695, 95% CI 0.436-0.927). The integrated clinical and imaging prognostic model was shown to be robust and of potential clinical relevance. The prediction of molecular markers showed promising results in the training set but could not be validated after external validation in a clinically relevant manner. Overall, these results show the potential of combining clinical features with imaging features for prognostic and predictive models in GBM, but further optimization and larger prospective studies are warranted.

14.
J Clin Med ; 10(2)2021 Jan 19.
Article En | MEDLINE | ID: mdl-33477796

BACKGROUND: Laser interstitial thermal therapy (LITT) is a minimal invasive neurosurgical technique for the treatment of brain tumors. Results of LITT have been reported in a case series of patients with deep seated and/or recurrent glioblastoma or cerebral metastases. With this review we aim to summarize the currently available evidence regarding safety and effectiveness of LITT in patients with newly diagnosed glioblastoma (nGBM). METHODS: A literature search was performed using electronic databases (PubMed and Embase). Papers were assessed for the methodological quality using the Risk Of Bias In Non- randomised Studies - of Interventions (ROBINS-I) tool, and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) was used to assess the quality of the evidence. RESULTS: We identified 835 papers of which only 11 articles were eligible for our review. All papers suffered from serious or critical risk of bias, and the quality of evidence was graded as very low according to the GRADE criteria. None of the studies was randomized and reporting of confounders and other parameters was poor. Median overall survival (OS) ranged from 4.1 to 32 months and progression free survival (PFS) from 2 to 31 months. The mean complication rate was 33.7%. No quality of life or cost-effectiveness data were reported. CONCLUSIONS: Due to the low quality of the studies, it is not possible to draw firm conclusions regarding the (cost) effectiveness of LITT in patients with newly diagnosed glioblastoma. The low quality of evidence shows the need for a well-designed prospective multicenter randomized controlled trial.

15.
Acta Neurochir (Wien) ; 163(7): 1879-1882, 2021 07.
Article En | MEDLINE | ID: mdl-32870422

BACKGROUND: Even though the need has been challenged, admitting patients to an intensive care or medium care unit (ICU/MCU) after adult supratentorial tumor craniotomy remains common practice. We have introduced a "no ICU, unless" policy for tumor craniotomy patients and evaluate costs, complications, and length of stay. METHODS: A prospective cohort study was performed comparing patients that underwent tumor craniotomy for supratentorial tumors during 2 years after introduction of the new policy with the year before. RESULTS: A reduction in ICU/MCU admittance from 88 to 23% of patients was found resulting in 13% cost reduction. Also, the new policy resulted in a 1.4-day shorter post-operative length of stay. Minor complications were reduced, while major complications remained the same. All major complications are reviewed. CONCLUSIONS: We show that routine post-operative ICU/MCU admittance after tumor craniotomy does not reduce complications, but actually interferes with recovery of our patients. Changing the paradigm results in earlier discharge and cost reduction.


Postoperative Complications , Supratentorial Neoplasms , Craniotomy/adverse effects , Humans , Intensive Care Units , Length of Stay , Middle Aged , Postoperative Complications/prevention & control , Prospective Studies , Supratentorial Neoplasms/surgery
16.
J Clin Med ; 9(11)2020 Nov 13.
Article En | MEDLINE | ID: mdl-33203047

Three-dimensional (3D) technologies are being used for patient education. For glioma, a personalized 3D model can show the patient specific tumor and eloquent areas. We aim to compare the amount of information that is understood and can be recalled after a pre-operative consult using a 3D model (physically printed or in Augmented Reality (AR)) versus two-dimensional (2D) MR images. In this explorative study, healthy individuals were eligible to participate. Sixty-one participants were enrolled and assigned to either the 2D (MRI/fMRI), 3D (physical 3D model) or AR groups. After undergoing a mock pre-operative consultation for low-grade glioma surgery, participants completed two assessments (one week apart) testing information recall using a standardized questionnaire. The 3D group obtained the highest recall scores on both assessments (Cohen's d = 1.76 and Cohen's d = 0.94, respectively, compared to 2D), followed by AR and 2D, respectively. Thus, real-size 3D models appear to improve information recall as compared to MR images in a pre-operative consultation for glioma cases. Future clinical studies should measure the efficacy of using real-size 3D models in actual neurosurgery patients.

17.
J Immunother Cancer ; 8(2)2020 09.
Article En | MEDLINE | ID: mdl-32907925

BACKGROUND: Myeloid-derived suppressor cells (MDSC) are a functional myeloid cell subset that includes myeloid cells with immune suppressive properties. The presence of MDSC has been reported in the peripheral blood of patients with several malignant and non-malignant diseases. So far, direct comparison of MDSC across different diseases and Centers is hindered by technical pitfalls and a lack of standardized methodology. To overcome this issue, we formed a network through the COST Action Mye-EUNITER (www.mye-euniter.eu) with the goal to standardize and facilitate the comparative analysis of human circulating MDSC in cancer, inflammation and infection. In this manuscript, we present the results of the multicenter study Mye-EUNITER MDSC Monitoring Initiative, that involved 13 laboratories and compared circulating MDSC subsets across multiple diseases, using a common protocol for the isolation, identification and characterization of these cells. METHODS: We developed, tested, executed and optimized a standard operating procedure for the isolation and immunophenotyping of MDSC using blood from healthy donors. We applied this procedure to the blood of almost 400 patients and controls with different solid tumors and non-malignant diseases. The latter included viral infections such as HIV and hepatitis B virus, but also psoriasis and cardiovascular disorders. RESULTS: We observed that the frequency of MDSC in healthy donors varied substantially between centers and was influenced by technical aspects such as the anticoagulant and separation method used. Expansion of polymorphonuclear (PMN)-MDSC exceeded the expansion of monocytic MDSC (M-MDSC) in five out of six solid tumors. PMN-MDSC expansion was more pronounced in cancer compared with infection and inflammation. Programmed death-ligand 1 was primarily expressed in M-MDSC and e-MDSC and was not upregulated as a consequence of disease. LOX-1 expression was confined to PMN-MDSC. CONCLUSIONS: This study provides improved technical protocols and workflows for the multi-center analysis of circulating human MDSC subsets. Application of these workflows revealed a predominant expansion of PMN-MDSC in solid tumors that exceeds expansion in chronic infection and inflammation.


Inflammation/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/immunology , Female , Humans , Male
18.
Acta Neurochir (Wien) ; 162(5): 1197-1203, 2020 05.
Article En | MEDLINE | ID: mdl-32146526

OBJECT: Surgery of tumours in the cerebellopontine angle (CPA) can lead to loss of facial nerve function. Different methods of intra-operative nerve monitoring (IOM) (including free-running EMG, direct nerve stimulation and transcranial motor evoked potentials (TcMEP)) have been used to predict facial nerve outcome during surgery. Recent research has shown TcMEP threshold increase and the occurrence of A-trains on the EMG to have great potential in doing so. This study compares these two methods and correlates them to House-Brackmann (HB) scores post-op in patients with tumours in the cerebellopontine angle. METHOD: Forty-three patients (one was operated twice) with large CPA tumours treated surgically in the Radboud University Medical Center between 2015 and 2019 were included in this study. During surgery, TcMEP threshold increases and A-train activity were measured. Because our treatment paradigm aims at facial nerve preservation (accepting residual tumour), TcMEP threshold increase of over 20 mA or occurrence of A-trains were considered as warning signs and used as a guide for terminating surgery. HB scores were measured post-op, at 6 weeks, 6 months and 1 year after surgery. Spearman's correlation was calculated between the IOM-values and the HB scores for a homogeneous subgroup of 30 patients with vestibular schwannoma (VS) without neurofibromatosis type II (NF-II) and all patients collectively. RESULTS: TcMEP threshold was successfully measured in 39 (90.7%) procedures. In the homogeneous VS non-NFII group, we found a statistically significant moderate-to-strong correlation between TcMEP threshold increase and House Brackmann score immediately post-op, at 6 weeks, 6 months and 1 year after surgery (Spearman's rho of 0.79 (p < 0.001), 0.74 (p < 0.001), 0.64 (p < 0.001) and 0.58 (p = 0.002), respectively). For A-trains, no correlation was found. Similar results were found when including all patients with CPA tumours. A threshold increase of < 20 mA was a predictor of good facial nerve outcome. CONCLUSION: These results show that TcMEP threshold increases are strongly correlated to post-operative HB scores, while A-trains are not. This suggests TcMEP threshold increases can be a valuable predictor for facial nerve outcome in patients with large tumours when facial nerve preservation is prioritized over total resection. In this study, we found no use for A-trains to prevent facial nerve deficits.


Evoked Potentials, Motor , Facial Nerve Injuries/diagnosis , Monitoring, Intraoperative/methods , Neuroma, Acoustic/surgery , Postoperative Complications/diagnosis , Adult , Aged , Cerebellopontine Angle/surgery , Electromyography , Facial Nerve/physiology , Facial Nerve/surgery , Facial Nerve Injuries/etiology , Female , Humans , Male , Middle Aged , Neurosurgical Procedures/adverse effects , Neurosurgical Procedures/methods , Transcranial Direct Current Stimulation/methods
20.
Acta Neurochir (Wien) ; 162(2): 373-378, 2020 02.
Article En | MEDLINE | ID: mdl-31656985

BACKGROUND: The surgeons' estimate of the extent of resection (EOR) shows little accuracy in previous literature. Considering the developments in surgical techniques of glioblastoma (GBM) treatment, we hypothesize an improvement in this estimation. This study aims to compare the EOR estimated by the neurosurgeon with the EOR determined using volumetric analysis on the post-operative MR scan. METHODS: Pre- and post-operative tumor volumes were calculated through semi-automatic volumetric assessment by three observers. Interobserver agreement was measured using intraclass correlation coefficient (ICC). A univariate general linear model was used to study the factors influencing the accuracy of estimation of resection percentage. RESULTS: ICC was high for all three measurements: pre-operative tumor volume was 0.980 (0.969-0.987), post-operative tumor volume 0.974 (0.961-0.984), and EOR 0.947 (0.917-0.967). Estimation of EOR by the surgeon showed moderate accuracy and agreement. Multivariable analysis showed a statistically significant effect of operating neurosurgeon (p = 0.01), use of fluorescence (p < 0.001), and resection percentage (p < 0.001) on the accuracy of the EOR estimation. CONCLUSION: All measurements through semi-automatic volumetric analysis show a high interobserver agreement, suggesting this to be a reliable assessment of EOR. We found a moderate reliability of the surgeons' estimate of EOR. Therefore, (early) post-operative MRI scanning for evaluation of EOR remains paramount.


Brain Neoplasms/surgery , Glioblastoma/surgery , Neoplasm, Residual/diagnostic imaging , Neurosurgeons/standards , Neurosurgical Procedures/standards , Postoperative Complications/diagnostic imaging , Adult , Aged , Female , Humans , Male , Margins of Excision , Middle Aged , Neoplasm, Residual/epidemiology , Neurosurgical Procedures/adverse effects , Postoperative Complications/epidemiology , Reproducibility of Results
...